Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.

نویسندگان

  • Luis E Aguirre
  • Alexandre de Oliveira
  • David Seč
  • Simon Čopar
  • Pedro L Almeida
  • Miha Ravnik
  • Maria Helena Godinho
  • Slobodan Žumer
چکیده

Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spider silk thread as a fiber optic chemical sensor

Several research teams have recently highlighted how silk can be used as an optical material. Through a regeneration process, it is possible to obtain silk films made from fibers of silk cocoons, by casting a silk fibron solution on an appropriate surface. These transparent films have been used tomake optical devices such as diffraction gratings, phase masks, and photonic crystal lattices.1 Our...

متن کامل

Interactions between Spider Silk and Cells – NIH/3T3 Fibroblasts Seeded on Miniature Weaving Frames

BACKGROUND Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been sh...

متن کامل

Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly

The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in ...

متن کامل

Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.

Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by ...

متن کامل

Novel Assembly Properties of Recombinant Spider Dragline Silk Proteins

Spider dragline silk, which exhibits extraordinary strength and toughness, is primarily composed of two related proteins that largely consist of repetitive sequences. In most spiders, the repetitive region of one of these proteins is rich in prolines, which are not present in the repetitive region of the other. The absence of prolines in one component was previously speculated to be essential f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2016